
Application Note 1709
Author: J. Pflasterer
ISL12022M EEPROM Recall Procedure
Register Structure
The ISL12022M device is a high-accuracy, temperature
compensated Real Time Clock (RTC). An internal temperature
sensor and state machine adjust the oscillator frequency to
keep error less than ±5ppm. Most of the registers in the device
are RAM-based, read and writable by a microcontroller. There
are also compensation registers which have a special setup.

The compensation registers are EEPROM-based, and recalled
into RAM for use by the state machine. They are
programmable only during factory test, no other programming
of these EEPROM registers is possible. The RAM mirror
registers are accessible, however, with two different types. One
type is readable by the user during normal operation, but not
writable. These are in the control registers and contain initial
calibration values for the crystal oscillator frequency
compensation. The other type of register is for internal test and
calibration of voltage references, A/D converter, and
temperature sensor. These registers are locked and are
normally not accessible by the user.

Power-up EEPROM Recall
The ISL12022M has VDD and VBAT power inputs. Either input may
have power applied first, and this will trigger the transfer of the
EEPROM contents to the RAM (called Power On Recall or POR).
The POR normally proceeds with no issues and the device will
function per the data sheet, with the serial interface
communicating normally. Note that in systems with no battery,
and VBAT grounded, the VDD pin alone will determine POR quality.

There are special situations which can affect proper POR. The
most frequent problems involve power supply ramp speed or
untimely glitches during power-up. Like most EEPROM-based
devices, a long slow VDD ramp will trigger recall at too low a
voltage and the RAM registers will have random or improper
data. Ramp rates slower than 50mV/ms can possibly cause
failed POR. Note that this is not listed in the data sheet, but is
extremely slow ramp and does not practically occur in most
systems.

Power glitches, especially in the region of about 1.5V to 2.0V,
can also trigger a failed POR, depending on the speed and
amplitude of the glitch. A well filtered power supply should
prevent glitches, and local decoupling at the VDD pin will help
prevent any problems. If glitches are common in a system, a
local R-C filter at the VDD pin will help greatly.

Note that the data sheet lists the maximum VDD Negative
power down ramp at -10V/ms. This only applies to circuits
using the VBAT pin for backup power, whereby the fast power
down ramp does not allow the VDD/VBAT switch enough time
to switch to the battery input while the VDD voltage has
dropped below that required to keep the RAM intact. This can
also cause RAM corruption, and should be avoided.

EEPROM Recall Verification and
Repair
In the case where a failed POR cannot be anticipated or
avoided (such as a lightning event), it is possible to perform a
procedure to place the correct contents in the calibration RAM,
by unlocking the internal test and calibration registers. These
registers are normally inaccessible to a user, but there is one
register which allows unlocking them for reading and writing.
The EEPROM locations can be read (only) and the contents
used to overwrite the test and calibration RAM registers.

The flowchart in Figure 1 outlines a procedure which reads the
EEPROM contents and compares to the recalled RAM
contents, and overwrites the RAM contents only if there is a
discrepancy between RAM and EEPROM. This procedure has
been used and verified to work at restoring corrupted registers.

The actual procedure is as follows. This can be used to write
microcontroller code for a power-up routine to test for failed
recall and correct, if necessary. Description is in parenthesis.

1. Write 03h to address FFh. (Sets the device into test mode
to access EEPROM (read only) and RAM.)

2. Write data 00h to addresses 48h through 4Bh (4 bytes).
(Clears test registers and sets device into normal mode, not
any test modes.)

3. Read data from addresses 30h to 37h (8 bytes, 1 page),
store that data. RTC EEPROM to MCU RAM (these are the
main calibration and setup registers. Read data from the
EEPROM and bypass the RAM or functional registers).

4. Read data from addresses 40h to 47h (8 bytes, 1 page),
store that data. RTC EEPROM to MCU RAM (these are also
calibration and setup registers. Read data from the
EEPROM and bypass the RAM or functional registers).

5. Write 01h to address FFh. (Sets the device into test mode
to access RAM only.)

6. Read data from addresses 30h to 37h (8 bytes, 1 page),
store that data. RTC RAM to MCU RAM (these are the RAM
calibration registers with the recalled data).

7. Read data from addresses 40h to 47h (8 bytes, 1 page),
store that data. RTC RAM to MCU RAM (these are also RAM
calibration registers with the recalled data).

8. Read data from addresses 0Bh, 0Ch, 0Dh (3 bytes only),
store that data. RTC RAM to MCU RAM (these are RAM
control registers with the recalled data, which are the same
as addresses 30h, 31h, 32h).

9. Read data from addresses 2Ch, 2Dh (2 bytes only), store
that data. RTC RAM to MCU RAM (these are RAM control
registers with the recalled data, which are the same as
addresses 33h, 42h).

10. Compare stored EEPROM data with the stored RAM data.
Each page and byte is compared to check for any bits
recalled incorrectly. If there is an incorrect bit anywhere,
begin overwrite routine.
1 CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.
1-888-INTERSIL or 1-888-468-3774 | Copyright Intersil Americas Inc. 2011. All Rights Reserved

Intersil (and design) is a trademark owned by Intersil Corporation or one of its subsidiaries.
All other trademarks mentioned are the property of their respective owners.

November 2, 2011
AN1709.0

Application Note 1709
11. Write the data stored from EEPROM 30h-37h to device
addresses 30h-37h (with RAM test mode enabled, all writes
go to RAM and will overwrite the existing recalled data. You
will NOT overwrite the EEPROM, that takes a complicated
sequence with high voltage).

12. Write the data stored from EEPROM 40h-47h to device
addresses 40h-47h. (overwrite RAM).

13. Read only register 34h, store (1 byte). (Read from existing
MCU RAM and store 1 byte to MCU RAM. Need to set the
override bit for writing directly to the device control registers.
These registers are identical to the recalled calibration
registers, cannot normally be written by the user, and need to
be set correctly.)

1. Set bit 6 to "0" (that is, mask off all bits and make bit 6 a
"0" with all other bits the same).

2. Write the new data back to register 34h.

3. Write data read from address 30h to register 0Bh.
From MCU RAM to RTC RAM

4. Write data read from address 31h to register 0Ch.
From MCU RAM to RTC RAM

5. Write data read from address 32h to register 0Dh.
From MCU RAM to RTC RAM

6. Write data read from address 33h to register 2Ch.
From MCU RAM to RTC RAM

7. Write data read from address 42h to register 2Dh.
From MCU RAM to RTC RAM

14. Write original data from register 34h back to register 34h
(with bit 6 back to "0"). MCU RAM to RTC RAM

15. Write 00h to address FFh. RTC RAM; disables test mode,
essentially locking the calibration RAM contents until power
is lost.

Sample C Code (Pseudocode)
Following is sample C code for the POR recall repair. This code is intended to be used at the first power-up. It can also be used If a power
supply glitch is suspected or as a periodic check/repair utility in the microcode. This code is not intended to be for a specific
microcontroller or as a complete code solution for the ISL12022M device.

/**

* This code is intended to be pseudo C code to aid in *

* the development of firmware for the Intersil RTC, with*

* part number ISL12022M. Some functions are declared but*

* not implemented as different uC architectures handle*

* these functions differently.*

***/

//Unimplemented utility functions

/*Format:

Function name

Pseudo Code declaration

Description of arguments and return values

*/

//Write I2C

void write_I2C(data, addr, numBytes);

//data is data to write (variable size)

//address is the starting address

//numBytes is the number of bytes to write. Matches size of "data"

//Read I2C

array read_I2C(addr, numBytes);

//returns an array of size "numBytes" which contains the read data starting at address 'addr'

//Compare

boolean compare(src, dest)

//Returns the truth value of src==dest
2 AN1709.0
November 2, 2011

Application Note 1709
//"Main Loop"

function start_up()

{

//Enter test Mode

write_I2C(0x03, 0xff, 1)

//Clear RAM test Config Reg

write_I2C([0x00,0x00,0x00,0x00],0x48,4)

//Transfer EEPROM to local storage

MCU_A1 = read_I2C(0x30,8)

MCU_A2 = read_I2C(0x40,8)

//Enter RAM test Mode

write_I2C(0x01,0xff,1)

//Transfer recalled RAM to local storage

MCU_B1 = read_I2C(0x30,8)

MCU_B2 = read_I2C(0x40,8)

MCU_B3 = [read_I2C(0x0B,1),read_I2C(0x0C,1),read_I2C(0x0D,1)] //array of 3 Bytes

MCU_B4 = [read_I2C(0x2C,1),read_I2C(0x2D,1)] //array of 2 Bytes

//Check

if(compare(MCU_A1,MCU_B1) && compare(MCU_A2,MCU_B2) && compare(MCU_A1[1:3],MCU_B3) &&
compare(MCU_A1[4],MCU_B4[1]) && compare(MCU_A2[3],MCU_B4[2]))

write_I2C(0x00,0xFF,1) //exit test mode

else

fixErrors()

}

//Error Fix

function fixErrors(){

I2C_write(MCU_A1, 0x30,8) //write A1 to RTC_RAM[0x40]

I2C_write(MCU_A2, 0x40,8) //write A2 to RTC_RAM[0x40]

MCU_D1 = MCU_A1[5] //Cop byte 5 of A1 to D1

MCU_D2 = (MCU_D1 & 0xBF) //0xBF is a bitmask, turns off bit 6

I2C_write(MCU_D2, 0x34, 1) //write D2 to RTC_RAM[0x34]

I2C_write(MCU_A1[1] 0x0B,1)//write first 3 bytes of A1 to RTC_RAM[0x0b-0c]

I2C_write(MCU_A1[2] 0x0C,1)

I2C_write(MCU_A1[3] 0x0D,1)
3 AN1709.0
November 2, 2011

Application Note 1709
Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without notice. Accordingly, the reader is
cautioned to verify that the Application Note or Technical Brief is current before proceeding.

For information regarding Intersil Corporation and its products, see www.intersil.com

I2C_write(MCU_A1[4], 0x2C,1) //write A1[4] to RTC_RAM[0x2c]

I2C_write(MCU_A2[3] 0x2D,1) //write A2[3] to RTC_RAM[0x2d]

I2C_write(MCU_D1, 0x34, 1) //write D1 to RTC_RAM[0x34]

write_I2C(0x00,0xFF,1) //exit test mode

}

End of C code.

Summary
The ISL12022M provides a high accuracy 3-in-1 RTC solution for
timing requirements. Care must be taken with the VDD supply
such that the data sheet limits are adhered to for voltage levels
and power down ramp rate. In addition, the power up ramp must
not be too slow, and filtering should be added to the VDD if supply
glitches are possible, to avoid upsetting the RAM registers
recalled from EEPROM.

If, after all precautions are taken, there still exists the possibility
of RAM upset during or after EEPROM POR, a procedure has
been outlined here that can be implemented in microcode for
checking and correcting these errors. The resulting code makes
for a robust solution in challenging power supply environments.
4 AN1709.0
November 2, 2011

Application Note 1709
FIGURE 1. EEPROM RECALL FLOW CHART

Write
RTC_RAM
03h FFh

Read (Store)
RTC_EEPROM to MCU_A1

30h – 37h (8 bytes)

Enter Test Mode 1
Write

RTC_RAM
01 FFh

Read (Store)
RTC_RAM to MCU_B1

30h – 37h (8 bytes)

Compare
MCU_A2 to MCU_B2
(40h – 47h) (8 bytes)

Write
MCU_A1 to RTC_RAM

30h – 37h (8 bytes)

Not Equal

Copy byte 5 (34h) of
MCU_A1 to MCU_D1Write

MCU_A1 (1st 3 bytes) to
RTC_RAM
30h 0Bh
31h 0Ch
32h 0Dh

Write
MCU_D2 to RTC_RAM

34h

Write
RTC_RAM
00h FFh

Equal

Re-Write
MCU_D1 to RTC_RAM

34h

Create MCU_D2
MCU_D2 = (MCU_D1 AND xBFh)

(Set Bit 6 = “0")

Done

Start

Read (Store)
RTC_EEPROM to MCU_A2

40h – 47h (8 bytes)

Read (Store)
RTC_RAM to MCU_B2

40h – 47h (8 bytes)

Compare
MCU_A1 to MCU_B1
(30h – 37h) (8 bytes)

Write
MCU_A2 to RTC_RAM

40h – 47h (8 bytes)

Equal

Read
RTC_RAM to MCU_B3

0Bh, 0Ch, 0Dh

Equal

Write
MCU_A1 (4th byte) to

RTC_RAM
33h 2Ch

Write
MCU_A2 (3rd byte) to

RTC_RAM
42h 2Dh

Not Equal

Not Equal

Compare
MCU_A2 (3rd byte) to
MCU_B4 (2nd Byte)

42h = 2Dh ?

Read
RTC_RAM to MCU_B4

2C, 2Dh

Equal

Not Equal

Not Equal

Clear RAM Test
Config Reg

Enter EEPROM Test
Mode

Txfer EEPROM to
local storage

Enter RAM Test Mode

Txfer Recalled RAM to
local storage (Calib)

Txfer Recalled RAM to
local storage (Calib)

Txfer Cntrl Reg RAM
to local storage (Calib)

Txfer Cntrl Reg RAM
to local storage

Test EEPROM vs
Calib Reg RAM

Test EEPROM vs
Calib Reg RAM

Test EEPROM vs
Cntrl Reg RAM

Test
EEPROM vs

Cntrl Reg
RAM

Test
EEPROM vs

Cntrl Reg
RAM

Exit Test Mode 1. Write EEPROM to
RAM for Calib

register, 2 pages
2. Set XMOD bit to
enable overwriting

Cntrl reg RAMWrite to each
location of the
Cntrl reg RAM

Calibr data
Reset XMOD bit

Write
RTC_RAM

00h 48h to 4Bh (4
bytes)

Compare
MCU_A1 (4th byte to

MCU_B4
33h = 2Ch ?

Compare
MCU_A1 (1st 3 bytes) to

MCU_B3
30h = 0Bh ?
31h = 0Ch ?
32h = 0Dh ?

Equal
5 AN1709.0
November 2, 2011

Application Note 1709
Appendix
Table 2 is a register map of the ISL12022M. The Different types
of registers are described, including RAM, EEPROM/RAM and
trim/test/calibration. The yellow highlighted registers are
recalled from EEPROM. The light green highlighted registers are

duplicates of recalled registers. This is provided for reference
only, many of the test and trim registers should not be altered by
the user, other than to restore them during the EEPROM POR
sequence.

FIGURE 2. ISL12022M REGISTER SUMMARY

ADDR SECTION NAME FUNCTION

00h-06h RTC RTC Clock/Calendar Registers

07h Status SR Status Register

08h Control INT Interrupt

09h Control PWRVDD Power Control

0Ah Control PWRBAT Power Control

0Bh Control ITR0 Calibration Values from EEPROM, Read-Only

0Ch Control ALPHA

0Dh Control BETA

0Eh Control FATR Calculated Calibration Correction Values, Read-Only

0Fh Control FDTR

10h-15h Alarm Alarm Registers

16h-1Fh TSV2B Timestamp Registers

20h-27h DSTCR Daylight Savings Registers

28h-29h TEMP Temperature Registers, Read-Only

2Ah-2Bh NPPM NPPM Error Calculation Registers, Read-Only

2Ch XT0 Calibration Values from EEPROM, Read-Only

2Dh ALPHA_H Calibration Values from EEPROM, Read-Only

30h TRIMR1 IATR/DTR Initial ATR and DTR Calibration Settings. EEPROM and RAM

31h TALPHA Alpha Cold Setting, EEPROM and RAM

32h TBETA Beta Settings, EEPROM and RAM

33h T0 Turnover Temperature Settings, EEPROM and RAM

34h TsBG Trim and User Overwrite Enable, EEPROM and RAM

35h TrBG Trim, EEPROM and RAM

36h TPTAT Trim, EEPROM and RAM

37h TADC_OS Trim, EEPROM and RAM

40h TRIMR2 TCADJP Trim, EEPROM and RAM

41h TCADJN Trim, EEPROM and RAM

42h ALPHA_H Alpha hot setting, EEPROM and RAM

43h Tr_Extra2 Reserved trim, EEPROM and RAM

44h Tr_Extra3 Reserved trim, EEPROM and RAM

45h TXT1 Reserved trim, EEPROM and RAM

46h TXT2 Reserved trim, EEPROM and RAM

47h TXT3 Reserved trim, EEPROM and RAM

48h TEST TMCR0 Test Mode Control, RAM

49h TMCR1 Test Mode Control, RAM

4Ah TMCR2 Test Mode Control, RAM

4Bh TMCR3 Test Mode Control, RAM

FFh TMEL TMEL Test Mode Enable, RAM
6 AN1709.0
November 2, 2011

